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Abstract
We consider a polymer of length N translocating through a narrow pore
in the absence of external fields. The characterization of its purportedly
anomalous dynamics has so far remained incomplete. We show that the polymer
dynamics is anomalous up to the Rouse time τR ∼ N1+2ν , with a mean square
displacement through the pore consistent with t (1+ν)/(1+2ν), with ν ≈ 0.588 the
Flory exponent. This is shown to be directly related to a decay over time of the
excess monomer density near the pore as t−(1+ν)/(1+2ν) exp(−t/τR). Beyond the
Rouse time, translocation becomes diffusive. In consequence of this, the dwell
time τd, the time a translocating polymer typically spends within the pore, scales
as N2+ν , in contrast to previous claims.

Transport of molecules across cell membranes is an essential mechanism for life processes.
These molecules are often long and flexible, and the pores in the membranes are too narrow to
allow them to pass through as a single unit. In such circumstances, the passage of a molecule
through the pore—i.e. its translocation—proceeds through a random process in which polymer
segments sequentially move through the pore. DNA, RNA and proteins are naturally occurring
long molecules [1] subject to translocation in a variety of biological processes. Translocation
is used in gene therapy [2], in delivery of drug molecules to their activation sites [3], and as
an efficient means of single-molecule sequencing of DNA and RNA [4]. Understandably, the
process of translocation has been an active topic of current research: both because it is an
essential ingredient in many biological processes and for its relevance in practical applications.

Translocation is a complicated process in living organisms—its dynamics may be strongly
influenced by factors like the presence of chaperone molecules, pH values, chemical potential
gradients, and assisting molecular motors [5]. In studies of translocation as a biophysical
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Figure 1. Pictorial representation of a translocation event, with the polymer shown before, during
and after translocation. We number the monomers, starting with the end-monomer on the side that
it moves to. The number of the monomer located in the middle of the pore is s.

process, the polymer is simplified to a sequentially connected string of N monomers. Herein,
the quantities of interest are the typical time for the polymer to leave a confining cell or
vesicle, the ‘escape time’ [6], and the typical time that the polymer spends in the pore or
‘dwell time’ [7], as a function of chain length N and other parameters like membrane thickness,
membrane adsorption, and electrochemical potential gradient [8]. These have been measured
directly in numerous experiments [9].

Experimentally, the most studied quantity is the dwell time τd, i.e., the pore-blockade
time for a translocation event (see figure 1). For theoretical descriptions of τd, during the last
decade a number of mean-field-type theories [6–8] have been proposed, in which translocation
is described by a Fokker–Planck equation for first passage over an entropic barrier in terms
of a single ‘reaction coordinate’ s. Here s is the number of the monomer threaded at the
pore (s = 1, . . . , N). These theories apply under the assumption that translocation is slower
than the equilibration timescale of the entire polymer, which is likely for high pore friction.
In [10], this assumption was questioned, and the authors found that for a self-avoiding polymer
performing Rouse dynamics, τd � τR, the Rouse time. Using simulation data in 2D, they
suggested that the inequality may actually be an equality, i.e., τd ∼ τR ∼ N1+2ν , which is
N2.5 in two dimensions. Numerical data in support of this suggestion for 2D appeared in [11].
However, in a publication contributed to by two of us, τd in 3D was numerically found to
scale as ∼N2.40±0.05 [13], significantly larger than N1+2ν , which is N2.18 in three dimensions.
Additionally, in a recent publication [14] τd was numerically found to scale as N2.52±0.04 in
three dimensions (a discussion on the theory of [14] appears at the end of this paper). Note
that these simulations do not incorporate hydrodynamical interactions, which are certainly
important in experiments. Also, these simulations (and all theoretical studies, including this
one) ignore interactions with other polymers, i.e., they consider polymers in infinitely dilute
solutions, while in cell environments, the solution is not infinitely dilute. In this paper we
consider translocation in the absence of hydrodynamical interactions, and at the end we reflect
on the results that we expect when the hydrodynamical interactions are included. We also note
here that simulations with hydrodynamical interactions are non-trivial and costly.

Amid all the above results on τd mutually differing by ∼O(N0.2), the only consensus that
survives is that τd � τR [10, 13]. Simulation results alone cannot determine the scaling of τd:
different groups use different polymer models with widely different criteria for convergence for
scaling results, and as a consequence, settling differences of ∼O(N0.2) in O(τR), is extremely
delicate.

An alternative approach that can potentially settle the issue of τd scaling with N is
analysing the dynamics of translocation at a microscopic level. Indeed, the lower limit τR

for τd implies that the dynamics of translocation is anomalous [10]. We know of only two
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published studies on the anomalous dynamics of translocation, both using a fractional Fokker–
Planck equation (FFPE) [12, 14]. However, whether the assumptions underlying a FFPE apply
for polymer translocation is not clear. Additionally, none of the studies used FFPE for the
purpose of determining the scaling of τd. In view of the above, such a potential clearly has not
been thoroughly exploited.

The purpose of this paper is to report the characteristics of the anomalous dynamics
of translocation, derived from the microscopic dynamics of the polymer, and the scaling of
τd obtained therefrom. Translocation proceeds via the exchange of monomers through the
pore: imagine a situation when a monomer from the left of the membrane translocates to the
right. This process increases the monomer density in the right neighbourhood of the pore, and
simultaneously reduces the monomer density in the left neighbourhood of the pore. The local
enhancement in the monomer density on the right of the pore takes a finite time to dissipate
away from the membrane along the backbone of the polymer (and similarly for replenishing
monomer density on the left neighbourhood of the pore). The imbalance in the monomer
densities between the two local neighbourhoods of the pore during this time implies that there
is an enhanced chance for the translocated monomer to return to the left of the membrane,
thereby giving rise to memory effects, and consequently, rendering the translocation dynamics
subdiffusive. More quantitatively, the excess monomer density (or the lack of it) in the vicinity
of the pore manifests itself in reduced (or increased) chain tension around the pore, creating an
imbalance of chain tension across the pore (we note here that the chain tension at the pore acts
as monomeric chemical potential, and from now on we use both terms interchangeably). We
use well-known laws of polymer physics to show that in time the imbalance in the chain tension
across the pore relaxes as t−(1+ν)/(1+2ν) exp(−t/τR). (Strictly speaking, τR in this expression
should be replaced by the characteristic equilibration time of a tethered polymer with length of
O(N); since both scale as N1+2ν , we use τR here, favouring notational simplicity.) This results
in the translocation dynamics being subdiffusive for t < τR, with the mean square displacement
〈�s2(t)〉 of the reaction coordinate s(t) increasing as t (1+ν)/(1+2ν); and diffusive for t > τR.
With

√〈�s2(τd)〉 ∼ N , this leads to τd ∼ N2+ν .
We substantiate our theoretical derivations with extensive Monte Carlo simulations, in

which the polymer performs single-monomer moves. The definition of time is such that single-
monomer moves along the polymer’s contour are attempted at a fixed rate of unity, while
moves that change the polymer’s contour are attempted ten times less often. Details of our
self-avoiding polymer model in 3D can be found in [15, 16].

The key step in quantitatively formulating the anomalous dynamics of translocation is
the following observation: a translocating polymer comprises two polymer segments tethered
at opposite ends of the pore that are able to exchange monomers between them through the
pore; so each acts as a reservoir of monomers for the other. The velocity of translocation
v(t) = ṡ(t), representing monomer current, responds to φ(t), the imbalance in the monomeric
chemical potential across the pore acting as ‘voltage’. Simultaneously, φ(t) also adjusts
in response to v(t). In the presence of memory effects, they are related to each other by
φ(t) = ∫ t

0 dt ′ μ(t − t ′)v(t ′) via the memory kernel μ(t), which can be thought of as the
(time-dependent) ‘impedance’ of the system. Supposing a zero-current equilibrium condition
at time 0, this relation can be inverted to obtain v(t) = ∫ t

0 dt ′ a(t − t ′)φ(t ′), where a(t) can
be thought of as the ‘admittance’. In the Laplace transform language, μ̃(k) = ã−1(k), where
k is the Laplace variable representing inverse time. Via the fluctuation-dissipation theorem,
they are related to the respective autocorrelation functions as μ(t − t ′) = 〈φ(t)φ(t ′)〉v=0 and
a(t − t ′) = 〈v(t)v(t ′)〉φ=0.

The behaviour of μ(t) may be obtained by considering the polymer segment on one side of
the membrane only, say the right, with a sudden introduction of p extra monomers at the pore,

3



J. Phys.: Condens. Matter 19 (2007) 432202 Fast Track Communication

corresponding to impulse current v(t) = pδ(t). We then ask for the time evolution of the mean
response 〈δ�(r)(t)〉, where δ�(r)(t) is the shift in chemical potential for the right segment of
the polymer at the pore. This means that for the translocation problem (with both right and left
segments), we would have φ(t) = δ�(r)(t) − δ�(l)(t), where δ�(l)(t) is the shift in chemical
potential for the left segment at the pore due to an opposite input current to it.

We now argue that this mean response, and hence μ(t), takes the form μ(t) ∼
t−α exp(−t/τR). The terminal exponential decay exp(−t/τR) is expected from the relaxation
dynamics of the entire right segment of the polymer with one end tethered at the pore [16].
To understand the physics behind the exponent α, we use the well-established result for the
relaxation time tn for n self-avoiding Rouse monomers scaling as tn ∼ n1+2ν . On the basis of
the expression of tn , we anticipate that by time t the extra monomers will be well equilibrated
across the inner part of the chain up to nt ∼ t1/(1+2ν) monomers from the pore, but not
significantly further. This internally equilibrated section of nt + p monomers extends only
r(nt) ∼ nν

t , less than its equilibrated value (nt + p)ν , because the larger scale conformation has
yet to adjust: the corresponding compressive force from these nt + p monomers is expected
by standard polymer scaling [18] to follow f/(kBT ) ∼ δr(nt)/r 2(nt) ∼ νp/[ntr(nt)] ∼
t−(1+ν)/(1+2ν) , for p � nt . This force f must be transmitted to the membrane, through
a combination of decreased tension at the pore and increased incidence of other membrane
contacts. The fraction borne by reducing chain tension at the pore leads us to the inequality
α � (1 + ν)/(1 + 2ν), which is significantly different from (but compatible with) the value
α1 = 2/(1 + 2ν) required to obtain τd ∼ τR. It seems unlikely that the adjustment at the
membrane should be disproportionately distributed between the chain tension at the pore and
other membrane contacts, leading to the expectation that the inequality above is actually an
equality.

We have confirmed this picture by measuring the impedance response through simulations.
In [17], two of us have shown that the centre of mass of the first few monomers is an excellent
proxy for chain tension at the pore and we assume here that this further serves as a proxy for δ�.
On the basis of this idea, we track 〈δ�(r)(t)〉 by measuring the distance of the average centre
of mass of the first five monomers from the membrane, 〈z(5)(t)〉, in response to the injection
of extra monomers near the pore at time 0. Specifically we consider the equilibrated right
segment of the polymer, of length N/2−10 (with one end tethered at the pore), adding 10 extra
monomers at the tethered end of the right segment at time 0, corresponding to p = 10, bringing
its length up to N/2. Using the proxy 〈z(5)(t)〉 we then track 〈δ�(r)(t)〉. The clear agreement
between the exponent obtained from the simulation results with the theoretical prediction of
α = (1 + ν)/(1 + 2ν) can be seen in figure 2. Note that the sharp deviation of the data
from the power law t−(1+ν)/(1+2ν) at long times is due to the asymptotic exponential decay as
exp(−t/τR), as the data collapse shows.

Having thus shown that μ(t) ∼ t− 1+ν
1+2ν exp(−t/τR), we can expect the translocation

dynamics to be anomalous for t < τR, in the sense that the mean square displacement of
the monomers through the pore 〈�s2(t)〉 ∼ tβ for some β < 1 and time t < τR, whilst beyond
the Rouse time it becomes simply diffusive. The value β = α = 1+ν

1+2ν
follows trivially on

expressing 〈�s2(t)〉 in terms of (translocative) velocity correlations 〈v(t)v(t ′)〉, which (by the
fluctuation-dissipation theorem) are given in terms of the time-dependent admittance a(t − t ′),
and hence inversely in terms of the corresponding impedance.

Indeed, as shown in figure 3, a double-logarithmic plot of 〈�s2(t)〉 versus t is consistent
with 〈�s2(t)〉 ∼ t (1+ν)/(1+2ν). The behaviour of 〈�s2(t)〉 at short times is an artefact of
our model: at short times, reptation moves dominate, leading to a transport mechanism for
‘stored lengths’ [19] along the polymer’s contour in which individual units of stored length
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Figure 2. Simulation results for the average chain tension component perpendicular to the
membrane proxied by 〈z(5)(∞) − z(5)(t)〉 following monomer injection at the pore corresponding
to v(t) = pδ(t), with p = 10. See the text for details. Red circles: N/2 = 50, green circles:
N/2 = 100, blue circles: N/2 = 150, solid (black) line: t−(1+ν)/(1+2ν) with ν = 0.588 for
self-avoiding polymers. To obtain a data collapse, the horizontal and vertical axes are scaled
by (N/2)1+2ν and (N/2)1+ν , respectively. The steeper drop at large times corresponds to the
exponential decay exp(−t/τR).

Figure 3. Double-logarithmic plot of the mean squared displacement of the reaction coordinate
〈�s2(t)〉 as a function of time t , for N = 100 (orange), 200 (red) and 500 (blue). The thick black
line indicates the theoretically expected slope corresponding to 〈�s2(t)〉 ∼ t(1+ν)/(1+2ν). The
dashed black line corresponds to 〈�s2(t)〉 ∼ t2/(1+2ν), which would have been the slope of the
〈�s2(t)〉 versus t curve in a double-logarithmic plot if τd were to scale as τR ∼ N1+2ν .

cannot pass each other. As a result, the dynamics of s(t), governed by the movement of
stored length units across the pore, is equivalent to a process known as ‘single-file diffusion’
on a line, characterized by the scaling 〈�s2(t)〉 ∼ t1/2 (not shown here). At long times
the polymer tails will relax, leading to 〈�s2(t)〉 ∼ t for t > τR. The presence of two
crossovers, the first one from 〈�s2(t)〉 ∼ t1/2 to 〈�s2(t)〉 ∼ t (1+ν)/(1+2ν) and the second one
from 〈�s2(t)〉 ∼ t (1+ν)/(1+2ν) to 〈�s2(t)〉 ∼ t at t ≈ τR, complicates the precise numerical
verification of the exponent (1 + ν)/(1 + 2ν). However, as shown in figure 3, there is an
extended regime in time in which the quantity t−(1+ν)/(1+2ν)〈�s2(t)〉 is nearly constant.

The subdiffusive behaviour 〈�s2(t)〉 ∼ t
1+ν
1+2ν for t < τR, combined with the diffusive

behaviour for t � τR, leads to the dwell time scaling as τd ∼ N2+ν , on the basis of the criterion
that

√〈�s2(τd)〉 ∼ N . The dwell time exponent 2 + ν 	 2.59 is in acceptable agreement
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Table 1. Median unthreading time over 1024 runs for each N .

N τu τu/N2+ν

100 65 136 0.434
150 183 423 0.428
200 393 245 0.436
250 714 619 0.445
300 1133 948 0.440
400 2369 379 0.437
500 4160 669 0.431

with the two numerical results on τd in 3D as mentioned in the introduction of this paper, and
in table 1 we present new high precision simulation data in support of τd ∼ N2+ν , in terms of
the median unthreading time. The unthreading time τu is defined as the time for the polymer to
leave the pore with s(t = 0) = N/2 and the two polymer segments equilibrated at t = 0. τu

and τd scale the same way, since τu < τd < 2τu [16].
We now reflect on the theory presented in [14].
We have defined τd as the pore-blockade time in experiments; i.e., if we define a state

of the polymer with s(t) = 0 as ‘0’ (polymer just detached from the pore on one side), and
with s(t) = N as ‘N’, then τd is the first-passage time required to travel from state 0 to state
N without possible reoccurrences of state 0. In [14], the authors attach a bead at the s = 0
end of the polymer, preventing it from leaving the pore, creating a situation where the polymer
returns to state 0 multiple times before it eventually reaches state N . The returns to state
0 being repeated implies that by construction of the problem, the polymer encounters a free
energy barrier on its way from state 0 to s = N/2, where the polymer’s configurational entropy
is the lowest. The authors then proceed to express their translocation time (τt hereafter), defined
as the first-passage time required to travel from state 0 to state N with reoccurrences of state
0, in terms of this free energy barrier. Below we settle the differences between τt of [14] and
our τd.

Consider the case where we attach a bead at s = 0 and another at s = N , preventing
it from leaving the pore. We then characterize the state of the polymer as follows. At states
x and x ′ the polymer can have all values of s except 0, N/2 and N ; and at states m and m ′,
s = N/2. The notational distinction between primed and unprimed states is that a primed state
can occur only between two consecutive states 0, or between two consecutive states N , while
an unprimed state occurs only between state 0 and state N . Its dynamics is then given by the
sequence of states, e.g.,

. . .Nxmx

τt︷ ︸︸ ︷
0x ′0x ′m ′x ′m ′x ′0x ′ 0xmxmxmx N︸ ︷︷ ︸

τd

x ′ N . . .

where the corresponding times taken (τt and τd) are indicated. Note in the above definitions
that τt > τd: since, due to the presence of the entropic barrier as described above, τt includes
the extra time spent in between the first and the last occurrences of state 0 before the polymer
eventually proceeds to state N . In other words, τt includes the effect of the entropic barrier,
while τd does not. A probability argument then leads us to

τt

τd
= 1

px + pm
= fx (1 + fm)

(pm + pm′) fm(1 + fx)
, (1)

where pm , pm′ and px are the probabilities of the corresponding states, fm = pm/pm′ and
fx = pm/px . The partition sum of a polymer of length n with one end tethered on a membrane
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is given by Zn ∼ λn nγ1−1 with λ a non-universal constant and γ1 = 0.68 [20], and therefore
we have pm + pm′ = Z 2

N/2/[
∑N

s=0 Zs Z N−s ] ∼ 1/N . Similarly, fx ∼ 1/N [13]. Finally,
fm ≈ 1Note 5 yields τt ∼ τd.

In [14] the authors include a factor N1−γ1 in τt to account for the effect of the entropic
barrier. However, we have shown above that τt ∼ τd, i.e., the free energy barrier does not play
a role for the scaling behaviour of τt with N . This implies, since τt includes the effect of the
entropic barrier and τd does not, that the theoretical expression for τt in [14] cannot be correct.
The numerical result τt ∼ N2.52±0.04 in [14], however, confirms our theoretical expression
τd ∼ N2+ν .

To conclude, in this paper we have characterized the anomalous dynamics of unbiased
translocation and obtained the scaling of the dwell time in terms of the polymer length. In future
work, we will study the role of hydrodynamics. Rouse friction may be an appropriate model
for the dynamics of long biopolymers in the environment within living cells, if it is sufficiently
gel-like to support screened hydrodynamics on the timescale of their configurational relaxation.
However, we should also ask what is expected in the other extreme of unscreened (Zimm)
hydrodynamics. For our theoretical discussion the key difference is that, instead of the Rouse
time τR, in the Zimm case the configurational relaxation times scale with N according to
τZimm ∼ N3ν in 3D, which upon substitution into our earlier argument would give the lower
bound value α = (1 + ν)/(3ν) for the time exponent of the impedance, leading to τd ∼ N1+2ν

(whose resemblance to the Rouse time is a coincidence—note that with hydrodynamics, Rouse
time loses all relevance). These results, however, do need to be verified by simulations
incorporating hydrodynamics.
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